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This paper deals with the influence of parameters of the lateral suspension on the ride
quality of railway vehicles during running on a track with lateral deviations, compared to
the designing geometry. The ride quality is evaluated at speed 200 km/h, based on lateral
accelerations in three reference points of the vehicle carbody. The values corresponding to
these accelerations are derived from numerical simulations on a non-linear model of the
vehicle with 21 degrees of freedom. The results thus obtained validate a series of features in
vibrational behaviour of the railway vehicle and the possibility to improve the ride quality
by the best possible selection of the suspension parameters.
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1. Introduction

During running, a railway vehicle is subjected to permanent vibrations that can be limited by the
suspension to a level that would not affect the dynamic performance of the vehicle. The ability
of the vehicle to comply with the transport requirements in terms of the level of vibrations to
which they can be subjected, and are dependent on the vehicle type, passengers, goods or the
locomotive staff, is assigned a high value by the ride quality (Garg and Dukkipati, 1984). This
criterion is considered when evaluating the dynamic behaviour of the railway vehicle for the
homologation and its admission into international traffic, besides safety and track fatigue (UIC
518 Leaflet, 2009).
From the perspective of ride quality, the evaluation of dynamic behaviour of railway vehicles

mainly involves finding solutions to certain issues of vibrations, which can be dealt with experi-
mentally and theoretically. As a matter of fact, it is about the determination of the acceleration
value at the vehicle carbody level, during either line testing (Dumitriu, 2014) or in a virtual
environment, based on a numerical model of the vehicle (Sharma, 2011). Numerical simulations
are useful tools to estimate the dynamic behaviour of the railway vehicle and to optimize its
dynamic performance even at the designing stage, followed by the investigation of the issues
emerging during exploitation. In comparison with the line testing that is costly and requires
considerable investment of time and effort and may be affected by out-of-control series of va-
riables, numerical simulations have a certain advantage as they allow the examination of the
dynamic behaviour of the vehicle even in the vicinity of extreme circumstances that cannot be
marked out during real testing conditions (Evans and Berg, 2009; Schupp, 2003).
The numerical evaluation of ride quality is possible via software applications developed on

the basis of certain vehicle/track system models. During the modelling stage, which needs to
be considered, the railway vehicle represents a complex oscillating system that vibrates both in
the vertical and lateral directions. Nevertheless, due to the fact that the vehicle construction
generally complies with the rules of geometrical symmetry, both inertial and elastic, vertical
motions can be regarded as uncoupled from the lateral ones, hence separately studied.
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As for the lateral vibrations, they are a consequence of the fact that rolling surfaces of the
wheels, rigidly fixed on the wheelset, have inversed conicities and are maintained by track lateral
irregularities (Iwnicki, 2006). The lateral vibrations are of particular importance, both for vehicle
stability and for ensuring ride quality and comfort of passengers. Indeed, the essential features
of such vibrations is the tendency to become unstable when the velocity goes beyond a certain
value – the critical speed, and unstable running of the vehicle can lead to extreme situations –
vehicle derailment and track damage. This is the reason why most studies have been focused
on the issue of vehicle stability dealt with from different perspectives – methods of stability
evaluation (Polach and Kaiser, 2012; Polach, 2006), stability optimization (Mazzola et al., 2010;
He and McPhee, 2002), influence of suspension parameters and wheel/rail contact conditions
upon the critical speed (Dabin et al., 2012; Huang et al., 2013; Lee and Cheng, 2005; Serajian,
2013; Park et al., 2011), analysis of the stability in curving (Cheng et al., 2009; Zboinski and
Dusza, 2010, 2011).

The paper talks about the issue of ride quality in comparison with lateral vibrations of the
vehicle, in terms of analysis of the influence of the primary and secondary suspension (stiffness
and lateral damping) upon lateral acceleration at the level of the vehicle carbody. This analysis
aims to bring a quality identification of the solutions by which the carbody lateral acceleration
can be minimised, thus giving the vehicle the best dynamic performance in terms of ride quality.
It is about a problem that, to the best knowledge of the author, has not been yet approached
from this viewpoint. A literature survey only mentions sensitivity analysis that evaluates the
effect of elastic properties in the suspension of the railway vehicles upon the dynamic behaviour
of the vehicle regarding safety, track fatigue, ride quality (Suarez et al., 2013). On the whole,
eight different elastic and damping properties were considered, excluding lateral damping of the
primary suspension.

To reach the goal of this paper, a non-linear complex model with 21 degrees of freedom of
the vehicle/track system is recommended. It allows examination of vehicle vibrations during
circulation on a track with lateral irregularities. The non-linear nature of the model comes from
wheel/rail creep forces, lateral reaction of the rail acting on the wheelset when its clearance on
the track is consumed and the load is transferred between the wheels of each wheelset.

To calculate the wheel/rail creep forces, the non-linear Polach model is applied (Polach, 1999)
that is herein extended by introducing the influence of the load transfer between the wheels of the
same wheelset upon creep coefficients. The results derived from numerical simulations validate
the possibility to improve ride quality by a good selection of lateral suspension parameters –
lateral damping of the secondary suspension or lateral stiffness of the primary suspension.

2. The model of the vehicle/track system

Figures 1 and 2 feature the mechanical model of the vehicle/track system herein used for nume-
rical evaluation of ride quality of a railway vehicle during running at velocity V on a track with
lateral irregularities. The vehicle is represented with a non-linear mechanical model of 21-degrees
of freedom, comprising of 7 rigid bodies representing the carbody, suspended masses of the bo-
gies (the bogies’ chassis) as well as four wheelsets connected via Kelvin-Voigt type elements by
which the elastic and damping elements of the two suspension levels are modelled.

The vehicle carbody is described by a rigid body with three degrees of freedom and the
following motions: lateral yc, roll ϕc and yaw αc. The bogie chassis is also modelled as a three-
degrees of freedom rigid body, namely lateral ybi, roll ϕbi and yaw αbi, with i = 1 or 2. It should
be noted that 2ac means the vehicle wheelbase and 2ab – the bogie wheelbase.

As for the wheelsets, they are considered to be able to perform the following independent
motions: lateral translation ywj,(j+1) and rotation around the vertical wheelset – yaw αwj,j+1,
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Fig. 1. The mechanical model of the vehicle/track system – front view

Fig. 2. The mechanical model of the vehicle/track system – side view

where j = 2i− 1, with i = 1 or 2, having in mind that the bogie i has the wheelsets j and j+1.
Similarly, the wheelset rotates around its own axis at the angular speed Ωwj,(j+1) = V/ro +
ωwj,j+1, where ωwj,j+1 is angular sliding speed of the wheelset compared to V/ro, and ro is radius
of the rolling circle when the wheelset occupies the median position on the track. Likewise, due
to shape of the rolling profiles, the wheelset performs two more motions, namely rolling and
bouncing, which are not independent, but affect the wheelset lateral motion on the track.
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The elastic elements of the secondary suspension can be deformed after vertical, lateral and
longitudinal directions and they have the rigidities of kzc, kyc and kxc. In order to restrict the
roll, each bogie has an anti-roll torsion bar system whose stiffness is kϕc. In the vertical direction,
the secondary suspension of the bogie has two dampers with the damping constant czc, while
in the horizontal direction there is only one damper with the constant cyc. The anti-hunting
dampers that are mounted on the lateral sides of the bogies have the damping constant cxc. It
is mentioned that the plane of the secondary suspension is at height hc referred to the carbody
mass centre and at height hb2 referred to the bogie mass centre, while the lateral base of the
secondary suspension is 2bc. The elements of the primary suspension whose lateral base is 2bc
also operate in the three directions and have rigidities kxb, kyb, kzb and damping constants cxb,
cyb and czb. The Kelvin-Voigt systems located in the axles plane at height hb1 referred to the
bogie mass centre are modelling their elastic driving.
As for the track lateral irregularities, they are described by a pseudo-stochastic function

ζ(x), written as

ζ(x) =
N
∑

k=0

Zk cos(Ωk + ϕk) (2.1)

where Zk is the amplitude of the spectral component corresponding to the wave number Ωk, and
ϕk is the lag of the spectral component k

′ for which a uniform random distribution is selected.
The amplitude of each spectral component is established on the basis of the power spectral
density of the track irregularities described in accordance with ORE B176 and specifications
included in the UIC 518 Leaflet regarding the track geometrical quality.
Against each wheelset, the track lateral irregularities are described by the function

ζj,(j+1)(xj,(j+1)) dependent on the distance along the track, such as

ζj,j+1(xj,j+1) =

{

0 for xj,j+1 ¬ 0
ζ(xj,j+1) for xj,j+1 > 0

(2.2)

where, depending on the wheelset position in the vehicle unit, xj,j+1 is as below:
— for i = 1

x1 = x x2 = x− ab (2.3)

— for i = 2

x3 = x− 2ac x4 = x− 2ab − 2ac (2.4)

where the abscissa x is calculated as a function of the time moment t, x = V t.
During circulation on a tangent track, the wheelsets usually follow the trajectory given by

the track alignment without consuming the clearance on the track. This occurs when the vehicle
exhibits stable behaviour. Under such circumstances, the wheel/rail contact takes place on the
rolling surface of the profiles and the contact geometry can be described by linear relations, as
for the S78 wheel profile (used in C.F.R. – the Romanian Railway Tracks) and for the UIC 60 rail
profile (Dumitriu, 2013). However, there are exceptional situations, such as the loss of stability
or the existence of an isolated defect of great amplitude, when it is possible to consume the
wheelset clearance on the track and shocks between the wheel flange and the inside rail flank.
The modelling of these latter situations is possible by the introduction of a lateral reaction
with a non-linear characteristic, which operates upon the outer wheel where the wheelset has
consumed the clearance on the track σ (Lee and Cheng, 2005). The equation for such a force is

Yσj,j+1 = H
(

|ywj,j+1 − ζj,j+1| −
σ

2

)

sgn (ywj,j+1 − ζj,j+1)kyr
(

|ywj,j+1 − ζj,j+1| −
σ

2

)

(2.5)

where kyr is the rail lateral stiffness and H(·) is Heaviside’s unit step function.
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3. The equations of motion of the vehicle

The equations of lateral, roll and yaw motions of the vehicle carbody are written as below

mcÿc + cyc[2(ẏc + hcϕ̇c)− (ẏb1 + ẏb2) + hb2(ϕ̇b1 + ϕ̇b2)
]

+ 2kyc[2(yc + hcϕc)− (yb1 + yb2) + hb2(ϕb1 + ϕb2)] = 0

Jxcϕ̈c + 2czcb
2
c [2ϕ̇c − (ϕ̇b1 + ϕ̇b2)] + cychc[2(ẏc + hcϕ̇c)− (ẏb1 + ẏb2) + hb2(ϕ̇b1 + ϕ̇b2)]

+ (kϕc + 2kzcb
2
c)[2ϕc − (ϕb1 + ϕb2)]

+ 2kychc[2(yc + hcϕc)− (yb1 + yb2) + hb2(ϕb1 + ϕb2)
]

−mcghcϕc = 0

Jzcα̈c + 2cxcb
2
c [2α̇c − (α̇b1 + α̇b2)] + cycac[2acα̇c − (ẏb1 − ẏb2) + hb2(ϕ̇b1 − ϕ̇b2)

]

+ 2kxcb
2
c [2αc − (αb1 + αb2)] + 2kycac[2acαc − (yb1 − yb2) + hb2(ϕb1 − ϕb2)] = 0

(3.1)

where mc represents mass of the carbody, Jxc is the inertia moment of the carbody around the
longitudinal axis, and Jzc – the inertia moment of the carbody around the vertical axis.
For i = 1, 2 and j = 2i − 1, the equations of motion for the lateral displacement, roll and

yaw of the bogies are as follows

mbÿbi + cyc(ẏbi − hb2ϕ̇bi − ẏc − hcϕ̇c ∓ acα̇c) + 2cyb[2(ẏbi + hb1ϕ̇bi)− (ẏwj + ẏw(j+1))]

+ 2kyc(ybi − hb2ϕbi − yc − hcϕc ∓ acαc) + 2kyb[2(ybi + hb1ϕbi)− (ywj + yw(j+1))] = 0

Jxbϕ̈bi + 2czcb
2
c(ϕ̇bi − ϕ̇c) + cychb2(hb2ϕ̇bi − ẏbi + ẏc + hcϕ̇c ± acα̇c)

+ 2cybhb1[2(hb1ϕ̇bi + ẏbi)− (ẏwj + ẏw(j+1))] + 4czbb
2
bϕ̇bi + (kϕc + 2kzcb

2
c)(ϕbi − ϕc)

+ 2kychb2(hb2ϕbi − ybi + yc + hcϕc ± acαc)

+ 2kybhb1[2(hb1ϕbi + ybi)− (ywj + yw(j+1))]

+
[

4kzbb
2
b − g

(

h12
mc
2
+ hb1mb

)]

ϕbi = 0 with h12 = hb1 + hb2

Jzbα̈bi + 2cxcb
2
c(α̇bi − α̇c) + 2cxbb

2
b [2α̇bi − (α̇wj + α̇w(j+1))]

+ 2cybab[2abα̇bi − (ẏwj − ẏw(j+1))] + 2kxcb
2
c(αbi − αc)

+ 2kxbb
2
b [2αbi − (αwj + αw(j+1))] + 2kybab[2abαbi − (ywj − yw(j+1))] = 0

(3.2)

where mb represents suspended mass of the bogie, Jxb is the inertia moment of the bogie chassis
around the longitudinal axis and Jzb – inertia moment of the bogie chassis around the vertical
axis.
For the wheelsets j and j + 1, the equations of lateral displacement and yaw motions and

the equation for rotary motion around the wheelset axis with i = 1, 2 and j = 2i− 1, are

mwÿwj,j+1 + 2cyb(ẏwj,j+1 − ẏbi − hb1ϕ̇bi ∓ abα̇bi) + 2kyb(ywj,j+1 − ybi − hb1ϕbi ∓ abαbi)

= Yj,(j+1)1 + Yj,(j+1)2 − Yσj,j+1

Jzwα̈wj,j+1 + 2cxbb
2
b(α̇wj,j+1 − α̇bi) + 2kxbb

2
b(αwj,j+1 − αbi)

+ Jyw
V

ro
ϕ̇wj,j+1 = −eo(Xj,(j+1)1 −Xj,(j+1)2)

Jywω̇wj,j+1 = −ro(Xj,(j+1)1 +Xj,(j+1)2)

(3.3)

where mw is mass of the wheelset; eo, ro – coordinates of the wheel-rail contact points when the
wheelset is in the median position on the track; Jxw, Jyw and Jzw – wheelset inertia moments.
The term Jyw(V/ro)ϕ̇wj,j+1 corresponds to the gyroscopic moment due to the combined effect of
wheelset rotary motion around its own axis with roll motion. Xj,(j+1)1,2 are longitudinal forces
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and Yj,(j+1)1,2 represent guidance forces acting upon the wheelsets j and j + 1, respectively, in
the wheel/rail contact points 1 or 2.
The above equations are added to the equations for bouncing and roll of the wheelsets, the

motions that are dependent on the lateral displacement of the wheelset on the track. These
equations are used to calculate the normal contact wheel/rail forces. When considering that the
bounce coming from the lateral displacement of the wheelset on the track is very low (Wickens,
2005), the inertia effect of the wheelset mass in the vertical direction can be thus neglected.
Hence, the balance equation for the vertical forces can be written as

Qj,(j+1)1 +Qj,(j+1)2 = 2Qo (3.4)

where Qj,(j+1)1,2 are vertical loads in the wheel/rail contact points and Qo is the static load
acting on the wheel.
The equation for the wheelset roll motion is

Jxwϕ̈wj,j+1 − Jyw
V

ro
α̇wj,j+1 − 2b

2
bczbϕ̇bi − 2b

2
bkzbϕbi

= ro(Yj,(j+1)1 + Yj,(j+1)2) + eo(Qj,(j+1)1 −Qj,(j+1)2) + roYσj,j+1

(3.5)

where the term Jyw(V/ro)α̇wj,j+1 corresponds to the gyroscopic moment due to the combined
effect of rotary motion of the wheelset around its own axis with the yaw motion.

Fig. 3. he wheel/rail contact forces acting in the cross wheel-rail section

The wheel/rail contact forces, namely the longitudinal forces, guidance forces and the ver-
tical loads are expressed as a function of the longitudinal components Txj,(j+1)1,2 and lateral
Tyj,(j+1)1,2 of the creep forces and the normal reactions Nj,(j+1)1,2 in the wheel/rail contact
points. As an example, the equations for the wheelsets j (see Fig. 3) can be therefore written

Xj1,2 = Txj1,2

Yj1,2 = Tyj1,2 cos γrj1,2 ∓Nj1,2 sin γrj1,2

Qj1,2 = ±Tyj1,2 sin γrj1,2 +Nj1,2 cos γrj1,2

(3.6)

where γrj1,2 stand for the wheel/rail contact angles against the track reference system. Since the
contact angles are small on the rolling surface areas, the equation below can be used

γrj1,2 = γo ± (ywj1,2 − ζj)
1

ρw − ρr

eo + ρwγo
eo − roγo

(3.7)

where γo is the wheel/rail contact angle for the median position of the wheelset on the track
and ρw and ρr represent the curvature radii of the wheel-rail rolling profiles, respectively.
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According to Polach’s friction nonlinear model (Polach, 1999), the components of creep forces
have the following forms

Txj1,2 = −
2µNj1,2
π

( κj1,2
1 + κ2j1,2

+ arctan κj1,2
)νxj1,2
νcj1,2

Tyj1,2 = −µNj1,2
{ 2

π

( κj1,2
1 + κ2j1,2

+ arctan κj1,2
)νyj1,2
νcj1,2

+
9

16
aj1,2KMj1,2

[

1 + 6.3
(

1− e(−a/b)j1,2
)]νsj1,2
νcj1,2

}

(3.8)

where µ is the friction coefficient, νxj1,2 and νyj1,2 represent the longitudinal and the lateral
components of the creepage in the wheel/rail contact points, νcj1,2 – creepage corrected by the
spin, and aj1,2 and bj1,2 stand for the semiaxes of the contact ellipse.
To calculate the creepage in the wheel/rail contact points, the following equations are used

νxj1,2 = ∓
ywj − ζj
ro

γe −
ωwjro
V
∓
eoα̇wj
V

νyj1,2 =
1

V
(φẏwj − λζ̇j)− αwj λ =

roγo
eo − roγo

φ = 1 + λ

νcj1,2 =
√

ν2xj1,2 + ν
2
ycj1,2

(3.9)

where

γe =
ρrγo
ρw − ρr

eo + ρrγo
eo − roγo

(3.10)

is the equivalent conicity and νycj1,2 represents the lateral component of the creepage corrected
by the spin.
In order to calculate νycj1,2, the relations below are applied

νycj1,2 =

{

νyj1,2 + aj1,2νsj1,2 for |νyj1,2 + aj1,2νsj1,2| > |νyj1,2|

νyj1,2 for |νyj1,2 + aj1,2νsj1,2| ¬ |νyj1,2|
(3.11)

where νsj1,2 is the spin defined as below

νsj1,2 =
α̇wj
V
∓
( 1

ro
+
ωwj
V

)

γwj1,2 (3.12)

where γwj1,2 represent the wheel/rail contact angles compared to the wheelset reference system

γwj1,2 = γo ± (ywj1,2 − ζj)
1

ρw − ρr

eo + ρrγo
eo − roγo

(3.13)

To determine the semiaxes of the wheel/rail contact ellipse, the Hertz equations will be used
as a function of the normal force and the curves of the rolling profiles.
As for the coefficient κj1,2 in equations (3.8), it can be calculated from

κj1,2 =
1

4

Gπaj1,2bj1,2Cii
µNj1,2

νcj1,2 (3.14)

where G is the transverse elasticity modulus and Cii is a constant defined by Polach depending
on the Kalker coefficients C11 and C22 (Kalker, 1967)

Cii =

√

(

C11
νxj1,2
νj1,2

)2
+
(

C22
νyj1,2
νj1,2

)2
νj1,2 =

√

ν2xj1,2 + ν
2
yj1,2 (3.15)
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The coefficient KMj1,2 in relation (3.8)2 is

KMj1,2 = |κsj1,2|
(δ3j1,2
3
−
δ2j1,2
2
+
1

6

)

−
1

3

√

(1− δ2j1,2)
3 (3.16)

where

δj1,2 =
κ2sj1,2 − 1

κ2sj1,2 + 1
κsj1,2 =

8

3

Gbj1,2
√

aj1,2bj1,2
µNj1,2

C23νycj1,2

1 + 2π
[

1− e−(a/b)j1,2
] (3.17)

while mentioning that C23 is the coefficient calculated by Kalker (1967) for the spin.
The next step is calculation of the normal reactions Nj,1,2 in the wheel/rail contact points

of the wheelsets j. After some calculations, equations (3.4) and (3.5) become

qj1Nj1 + qj2Nj2 = 2Qo

(ropj1 − eoqj1)Nj1 + (ropj2 + eoqj2)Nj2 = −cj
(3.18)

in which

cj = Jxoϕ̈oj − Jyo
V

ro
α̇oj − 2b

2
bczbϕ̇bi − 2b

2
bkzbϕbi − roYσj

qj1,2 = 1∓
(

Kj1,2
νyj1,2
νcj1,2

+Ksj1,2
νsj1,2
νcj1,2

)

γrj1,2

pj1,2 = Kj1,2
νyj1,2
νcj1,2

+Ksj1,2
νsj1,2
νcj1,2

± γrj1,2

(3.19)

where

Kj1,2 =
2µ

π

( κj1,2
1 + κ2j1,2

+ arctan κj1,2
)

Ksj1,2 =
9µ

16
aj1,2KMj1,2

[

1 + 6.3
(

1− e−(a/b)j1,2
)]

(3.20)

It is worth mentioning that the set of equations (3.18) is non-linear because the coefficients
qj1,2 and pj1,2 depend on the normal forces Nj1,2. The solution to the set can be derived by
simple iterations via the equations

Nj1 =
2(ropj2 + eoqj2)Qo + qj2cj
ro(qj1pj2 − qj2pj1) + 2eoqj1qj2

Nj2 =
−qj1cj − 2(ropj1 − eoqj1)Qo
ro(qj1pj2 − qj2pj1) + 2eoqj1qj2

(3.21)

Equations of motion (3.1)-(3.3) can be solved by the Runge-Kutta method and relations
(3.21) are used iteratively for each integration step in the calculation of the wheel/rail contact
normal forces.

4. Numerical analysis

This Section features the results of numerical simulations regarding the influence of parameters
of the lateral suspension on ride quality in the railway vehicle at velocity of 200 km/h on a
track with lateral irregularities. The evaluation of ride quality is based on the lateral R.M.S.
acceleration, calculated in three reference points on the carbody longitudinal axis and at the
floor level – at the carbody centre and above the two bogies.
The parameters of the vehicle numerical model are shown in Table 1. To calculate geometrical

parameters of the wheel/rail contact, the S78 profile wheel and the UIC 60 rail with the standard
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Table 1. Parameters of the numerical model

mc = 34000 kg 2cxc = 50 kNs/m

mb = 3200 kg cyc = 15.205 kNs/m

mw = 1650 kg 2czc = 34.44 kNs/m

Jxc = 57460 kgm
2 2kxc = 340 kN/m

Jzc = 2456500 kgm
2 2kyc = 340 kN/m

Jxb = 3200 kgm
2 2kzc = 1.2MN/m

Jzb = 5000 kgm
2 kϕc = 10 kNm

Jxw = Jzw = 928.125 kgm
2 4cxb = 100 kNs/m

Jyw = 349.14 kgm
2 4cyb = 35.77 kNs/m

2ac = 19m 4czb = 52.21 kNs/m

2ab = 2.56m 4kxb = 140MN/m

hc = 1.3m 4kyb = 10MN/m

hb1 = 0.25m; hb2 = 0.2m 4kzb = 4.4MN/m

2bb = 2bc = 2m kyr = 100MN/m

σ = 12mm µ = 0.36

Fig. 4. The lateral R.M.S. acceleration of the carbody: (a) at the carbody centre, (b) above the front
bogie, (c) above the rear bogie

C.F.R. of 1/20 are considered. When the wheelset occupies the median position on the track
with the normal gauge, the coordinates of the wheel/rail contact points are ro = 0.4598m,
eo = 0.754m and γo = 0.0495, and the profiles radii are: ρw = 500mm and ρr = 300mm
(Dumitriu, 2013). The equivalent conicity is γe = 0.1237.

For the reference parameters of the numerical model presented in Table 1, Fig. 4 shows the
lateral R.M.S. acceleration calculated in the three reference points of the carbody, ranging from
20 to 200 km/h. The velocity increases along with the lateral acceleration, which is not uniform
due to the geometrical filtering effect coming from the vehicle wheelbases. Further on, it should
be noted that, irrespective of the velocity, the acceleration is lower at the carbody centre and
rises against the bogies. Also, it exhibits different behaviour of the vehicle in the reference points
located above the two bogies. Should the carbody critical point in terms of vibrations is that
reference point, where the acceleration is higher, this point can be identified against either the
front bogie or the rear bogie, depending on the velocity. Thus, the carbody critical point is
found above the front bogie up to velocity of 60 km/h. When the speed increases, the critical
point migrates over the rear bogie – in this reference point, the carbody acceleration has the
maximum value for velocities going from 80 to 160 km/h. When the vehicle travels at a speed
of 180 or 200 km/h, the reference point above the front bogie is the carbody critical point.
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Figure 5 shows the carbody lateral R.M.S. acceleration of the vehicle at the velocity of
200 km/h for values of the secondary suspension lateral stiffness ranging from 104N/m to 5 ·
105N/m. The higher kyc, the worse ride quality is, a fact also visible in the continuous increase
of the acceleration. For instance, for the reference value of the lateral stiffness, the R.M.S.
acceleration is 0.084m/s2 – at the carbody centre; 0.126m/s2 – above the front bogie; 0.113m/s2

– above the rear bogie. If kyc goes up to 5 · 10
5 N/m, the following values of acceleration will be

obtained: 0.237m/s2 – at the carbody centre; 0.329m/s2 – above the front bogie; 0.363m/s2 –
above the rear bogie. It is an increase of about circa three times of the lateral acceleration at
the vehicle carbody level.
The diagrams in Fig. 5 also reveal an interesting fact, namely that for a rise in the lateral

stiffness of the secondary suspension, the carbody critical point migrates from one reference
point to another. Thus, for kyc ranging from 10

4N/m to 1.7 · 105 N/m, the critical point is
located above the front bogie, while for kyc as 5 · 10

5N/m, this point is the carbody reference
point against the rear bogie.

Fig. 5. The influence of the lateral stiffness of the secondary suspension upon ride quality: (a) at the
carbody centre, (b) above the front bogie, (c) above the rear bogie

Fig. 6. The influence of the lateral damping of the secondary suspension upon ride quality: (a) at the
carbody centre, (b) above the front bogie, (c) above the rear bogie

Upon examining the diagrams in Fig. 6, the observation is that there is a value of the lateral
damping of the secondary suspension for which the lateral acceleration in any of the carbody
reference points has the minimum value. At the carbody centre, where the level of vibrations
is lower, the minimum acceleration is calculated for cyc = 5 · 10

3Ns/m. On the other hand,
the same thing happens above the bogies for higher values of the lateral damping, which is
here the reference value itself (cyc = 1.52 · 10

4 Ns/m). The conclusion is that an increase in
the lateral damping of the secondary suspension up to a certain value generally improves ride
quality. Over this limit, the damping has a contrary effect, evident in a significant rise of the
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R.M.S. acceleration. For instance, this acceleration is 0.074m/s2 for cyc = 5 · 10
3Ns/m at the

carbody centre. When raising the lateral damping up to 105 Ns/m, the acceleration becomes
0.31m/s2. The same thing occurs in the reference points above the bogies. Thus, above the
front bogie, the R.M.S. acceleration is 0.126m/s2 for cyc = 1.52 · 10

4Ns/m; when cyc reaches
105Ns/m, the acceleration goes up to 0.345m/s2. Another observation is related to the fact that
the lateral damping of the secondary suspension influences the position of the critical point of
the carbody. In this case, it is about its migration from the front bogie to the rear bogie, when
cyc is 10

5 Ns/m.

The diagrams in Fig. 7 help with further examination of the influence of the lateral stiffness
of the primary suspension upon ride quality, thus considering values of kyb between 10

6N/m
and 5 · 107 N/m. For kyb = 5 · 10

6 N/m, the lateral R.M.S. acceleration calculated in the carbody
reference points has the minimum value: 0.080m/s2 – at the carbody centre; 0.121m/s2 – against
the front bogie; 0.106m/s2 – against the rear bogie. On the other hand, for the above cases, a
change in the lateral stiffness of the primary suspension does not lead to the movement of the
carbody critical point, which remains above the front bogie.

Fig. 7. The influence of the lateral stiffness of the primary suspension upon ride quality: (a) at the
carbody centre, (b) above the front bogie, (c) above the rear bogie

Fig. 8. The influence of the lateral damping of the primary suspension upon ride quality: (a) at the
carbody centre, (b) above the front bogie, (c) above the rear bogie

The influence of lateral damping of the primary suspension upon ride quality is evident in
the diagrams in Fig. 8. They include the results regarding the lateral R.M.S. acceleration for
values of cyb within the interval of 10

3, 104, 105 Ns/m. It can observed that lateral damping of the
primary suspension does not have a significant influence upon the R.M.S. acceleration. However,
for better ride quality, it is desirable to have the lowest possible lateral damping of the primary
suspension. To validate this hypothesis, let us look at the results corresponding to the limit
values of the interval defined for cyb. Thus, for cyb = 10

3 Ns/m, the R.M.S. acceleration in the
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carbody reference points is 0.081m/s2 – at the carbody centre; 0.124m/s2 – above the front
bogie; 0.111m/s2 – above the rear bogie. For cyb = 10

5 Ns/m, the results are as such: 0.113m/s2

– at the carbody centre; 0.144m/s2 – above the front bogie; 0.138m/s2 – above the rear bogie.
As for the position of the carbody critical point, it can be proven that this corresponds to the
reference point above the first bogie, irrespective of the value of cyb being considered.

5. Conclusions

The paper hereby examines the influence of suspension parameters upon ride quality compared
to lateral vibrations of a railway vehicle during running on a track with lateral irregularities.
The ride quality is evaluated by numerical simulations, based on the lateral accelerations in
three reference points of the carbody – at its centre and above the bogies.

The results thus obtained validate, on one hand, some features of lateral vibrations of the
railway vehicle and, on the other hand, the possibility to improve ride quality by the best possible
selection of the lateral suspension parameters.

It has been shown that, irrespective of the velocity, the lateral acceleration is lower at the
carbody centre and higher above the bogies. Similarly, the asymmetry of the carbody vibrations
has been noticed in the reference points against the two bogies. The concept of the carbody
critical point in terms of the vibration level has been introduced as being that reference point
where the acceleration has the highest value. Its position depends on velocity and parameters
of the secondary suspension.

The analysis of the influence of the suspension parameters on the carbody lateral acceleration
has confirmed that the most appropriate values of the lateral damping in the secondary suspen-
sion or of the lateral stiffness in the primary suspension can be identified. For these values, the
carbody acceleration can be lowered to minimum, hence enabling the vehicle to have the best
dynamic performance in terms of ride quality. Likewise, the lateral stiffness of the secondary
suspension can significantly affect ride quality under certain conditions.
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